

टीईसी का मानक दस्तावेज टीईसी

(पूर्व सं: टीईसी/एसडी/NIL)/ (सं: टीईसी 57090:2025 को अधिक्रमित करता है)

STANDARD DOCUMENT OF TEC

TEC 57090:2025

टेलीकम्युनिकेशन और महत्वपूर्ण डिजिटल अवसंरचना में एआई घटना डेटाबेस की संरचना और वर्गीकरण के लिए मानक

Standard for the Schema and Taxonomy of an AI Incident Database in Telecommunications and Critical Digital Infrastructure

दूरसंचार अभियांत्रिकी केंद्र

खुर्शीदलाल भवन, जनपथ, नई दिल्ली-110001, भारत TELECOMMUNICATION ENGINEERING CENTRE KHURSHID LAL BHAWAN, JANPATH, NEW DELHI-110001, INDIA www.tec.gov.in

© टीईसी, वर्ष © TEC, YEAR

इस सर्वाधिकार सुरक्षित प्रकाशन का कोई भी हिस्सा, दूरसंचार अभियांत्रिकी केंद्र, नई दिल्ली की लिखित स्वीकृति के बिना, किसी भी रूप में या किसी भी प्रकार से जैसे - इलेक्ट्रॉनिक, मैकेनिकल, फोटोकॉपी, रिकॉर्डिंग, स्कैनिंग आदि रूप में प्रेषित, संग्रहीत या पुनरुत्पादित न किया जाए।

All rights reserved and no part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form and by any means - electronic, mechanical, photocopying, recording, scanning or otherwise, without written permission from the Telecommunication Engineering Centre, New Delhi.

Release __: Month, 2025

FOREWORD

Telecommunication Engineering Centre (TEC) is the technical arm of Department of Telecommunications (DOT), Government of India. Its activities include:

- Framing of TEC Standards for Generic Requirements for a Product/Equipment, Standards for Interface Requirements for a Product/Equipment, Standards for Service Requirements & Standard document of TEC for Telecom Products and Services
- Formulation of Essential Requirements (ERs) under Mandatory Testing and Certification of Telecom Equipment (MTCTE)
- Field evaluation of Telecom Products and Systems
- Designation of Conformity Assessment Bodies (CABs)/Testing facilities
- Testing & Certification of Telecom products
- Adoption of Standards
- Support to DoT on technical/technology issues

For the purpose of testing, four Regional Telecom Engineering Centers (RTECs) have been established which are located at New Delhi, Bangalore, Mumbai, and Kolkata.

ABSTRACT

This Standard enumerates comprehensive harm taxonomy for an AI incident database. Artificial intelligence is increasingly being used in all domains including telecommunication and related ICT. While AI offers significant benefits, it also poses risks and harms, particularly when systems fail or are misused. This standard provides the comprehensive harm taxonomy for an AI incident database. This taxonomy will systematically, categorise and document incidents to improve the understanding, prevention, and mitigation of AI-related harms.

CONTENTS

1.	Introduction	5
2.	Usage of the Standard	6
3.	Database Schema for Capturing Al Incidents	7
	The schema would have the following structure:	
4.	Taxonomy	12
5.	Reference	14
	Abbreviations	

1. Introduction

The rapid advancement and deployment of Artificial Intelligence(AI) technologies have transformed various sectors, including telecommunication, ICT and public services. Al systems are now instrumental in making decisions that affect individuals and society at large. Despite their numerous benefits, these systems are not without risks and challenges. Incidents of AI failure, biases, privacy violations, and unintended consequences have raised significant ethical, social, legal and technical concerns. These issues highlight the critical need for a structured approach to understand and manage the harms associated with AI.

This standard defines a standardized schema for AI incident databases in telecommunications and critical digital infrastructure. It also establishes a structured taxonomy for classifying AI incidents systematically. The schema ensures consistency in how incidents are recorded, making data collection and exchange more uniform across different systems. The harm taxonomy provides clear categories for classifying incidents based on their impact, improving transparency and accountability. This standard supports regulatory compliance, helps in risk assessment, and enhances incident response by ensuring AI-related risks are documented in a structured and consistent manner.

2. Usage of the Standard

This standard defines structured data fields and classification criteria for AI incident databases in telecommunications and critical digital infrastructure. It ensures consistency in documentation and enables interoperability across reporting frameworks, supporting data-driven policy decisions without prescribing specific mitigation strategies.

2.1 Users of Standard

2.1.1 Organisations/ Individuals developing and deploying Al systems:

Developers and deployers can utilise the harm taxonomy to capture and document incidents during the development and testing phase of AI systems. This will help in identifying the patterns of failure or risk, informing the design of safer and more reliable AI technologies.

2.1.2 Policy Makers and Regulators:

One goal of this Standard is to ensure that development of policies and regulations related to AI technologies are based on comprehensive and systematically gathered data. This will promote the development of fair and safe AI systems.

2.1.3 Researchers and Academia:

This provides a rich dataset for research on AI ethics, safety and performance contributing to academic knowledge and innovation.

2.1.4 Incident Reporters:

This ensures that individuals reporting incidents, including employees, users, or whistleblowers, have their reports structured comprehensively and are useful for subsequent analysis and action.

3. Database Schema for Capturing Al Incidents

This standard defines a database structure for systematically capturing AI incidents, ensuring thorough documentation for analysis and improvement of AI systems. It specifies key data fields essential for incident reporting, along with optional fields for additional context as follows (ref. 3):

- 1. Incident ID: A unique identifier assigned to each incident.
- **2. Incident Title:** A concise title that encapsulates the incident.
- 3. Incident Summary: A detailed overview of the incident, up to 250 words.
- **4. Incident Date:** The exact date (and time, if applicable) when the incident took place.
- 5. Incident Location(s): The geographical area(s) where the incident occurred.
- **6. Affected Party(ies):** The individuals, organizations, or entities impacted by the incident.
- 7. Sector(s) Impacted: The industry or sector affected by the incident.
- **8. Incident Issue(s):** The specific concerns related to the system, governance, technology, or third-party actions.
- **9.** Al Application Name(s): The name of the Al system or application involved in the incident.
- **10. Application Version:** The specific version of the Al application in use.
- **11.Application Technology(ies):** The technologies employed within the Al application/system.
- **12. Application Purpose(s):** The intended function or goal of the Al application.
- **13.Application Deployer:** The organization or entity responsible for deploying the Al system.
- **14. Application Developer:** The organization or entity that created the AI system.
- **15. Application Transparency:** The level of clarity, accessibility, and accountability of the AI system to users and stakeholders, including the ability to challenge it.
- **16.Incident severity:** The level of impact or seriousness of the incident.
- **17.Physical Harm:** Any form of injury, damage, or adverse impact on the physical well-being of an individual or a group.
- **18.Environmental Harm:** Any adverse impact or damage on the natural and built environment, affecting ecosystems, wildlife, quality of air, water or soil.
- **19.Property Harm:** Damaging or destroying property of an individual, group or organisation.
- **20.Psychological Harm:** Damage to mental health and well-being of an individual or a group.
- **21.Reputational Harm:** Damage of reputation to an individual, group or organisation.
- **22.Financial Harm:** Impairment of financial assets of an individual, group or organisation.
- **23. Fundamental Rights/ Human Rights Harm:** Damage to fundamental rights or human rights to an individual.

- **24. Link to incident description/ news article:** A URL directing to external sources for detailed information or news coverage of the incident.
- **25. Name of submitter:** The full name of the individual or organization submitting the incident report.
- **26. Email of submitter:** The contact email address of the submitter for follow-up and verification purposes.
- **27.Incident news source(s):** The sources, such as news articles or reports, from which information about the incident was obtained.
- **28.Extra information shared by the submitter:** Additional details or context provided by the submitter that may enhance the understanding of the incident.

S. No.	Field Name	Data Type	Description	Constraints
1.	Incident ID	Integer	A unique identifier assigned to each incident.	Primary Key, Auto- Increment
2.	Incident Title	Varchar (255)	A concise title that encapsulates the incident.	Not Null
3.	Incident Summary	Text	A detailed overview of the incident, up to 250 words.	
4.	Incident Date	DateTime	The exact date and time when the incident occurred.	Not Null
5.	Incident Location(s)	Varchar (255)	The geographical area(s) where the incident occurred.	
6.	Affected Party(ies)	Varchar (255)	Individuals, organizations, or entities impacted.	
7.	Sector(s) Impacted	Varchar (255)	The industry or sector affected by the incident.	
8.	Incident Issue(s)	Text	Specific concerns related to the system or third-parties.	
9.	Al Application Name(s)	Varchar (255)	Name of the AI system involved in the incident.	
10.	Application Version	Varchar (50)	Specific version of the Al application in use.	
11.	Application Technology(ies)	Varchar (255)	Technologies employed within the AI system.	
12.	Application Purpose(s)	Varchar (255)	Intended function or goal of the AI application.	
13.	Application Deployer	Varchar (255)	Organization responsible for deploying the Al system.	

14.	Application Developer	Varchar (255)	Organization that created the AI system.	
15.	Application Transparency	Varchar (255)	Level of clarity and accountability of the Al system.	
16.	Incident Severity	Varchar (50)	Degree of impact or seriousness of the incident.	
17.	Physical Harm	Boolean	Indicates if there was physical harm caused.	2012
18.	Environmental Harm	Boolean	Indicates if there was environmental harm caused.	
19.	Property Harm	Boolean	Indicates if there was property damage or destruction.	
20.	Psychological Harm	Boolean	Indicates if there was psychological harm caused.	
21.	Reputational Harm	Boolean	Indicates if there was reputational damage.	
22.	Financial Harm	Boolean	Indicates if there was financial impairment.	
23.	Fundamental Rights/Human Rights Harm	Boolean	Indicates if there was a violation of human rights.	
24.	Link to Incident Description/News Article	URL	Hyperlinks to external sources detailing the incident.	
25.	Name of submitter	Varchar (50)	Name of the submitter	Not Null
26.	Email of submitter	Varchar (255)	Email of the submitter	Not Null

27.	Incident news source(s)	URL	Hyperlinks to external sources detailing the incident.	Not Null
28.	Extra information shared by the submitter	Text	Provide additional context, comments, or observations, which may support incident analysis or provide relevant background information not covered in standard fields.	

3.1 The schema would have the following structure:

Al incidents will be submitted by incident reporters with necessary evidence to support the occurrence of the incident. Following are the details required from the incident reporter.

- 1. Name of submitter: The name of the person reporting the incident.
- 2. Contact details of submitter: The email and/or mobile number of the incident reporter.
- 3. Incident news source(s): The origin or source from which the incident reporter learned about the incident.
- 4. Designation
- 5. Qualification
- 6. Authorized to Report(Yes/No)

4. Taxonomy

The proposed taxonomy categorizes AI incidents in critical digital infrastructure, addressing sector-specific challenges in telecommunications and energy. It classifies incidents based on type, affected systems, severity, failure cause, and harm, with subcategories for detailed analysis (ref. 3).

Category	Subcategory	Examples	
In all and	Network Disruption	Telecom network outages, power grid failures.	
Incident type	Service Quality Degradation	Slower internet speeds, voltage fluctuations.	
	Security Breach	Data breaches, unauthorized access.	
	Al Mismanagement	Incorrect resource allocation, faulty Al decisions.	
	Operational Failure	Trading system errors, logistics failures.	
	Predictive Maintenance Failure	Unpredicted power outages, hardware failures.	
Acceptant	Core Network	Failure in central telecom switches, energy grid control centers.	
Affected system	Edge/Access Networks	Base station disruptions, edge server issues.	
	Data Transmission Systems	Data link failures, fiber optic congestion.	
0	Virtualized/Cloud Infrastructure	Cloud service outages, virtual network issues.	
0),	IoT Components	Faulty smart meters, IoT sensor failures.	
	Physical Infrastructure	Security system malfunctions, HVAC failures.	
Incident	Critical	Major nationwide outages, complete system failures.	
severity	High	Significant disruptions, major service degradation.	

	Moderate	Regional outages, partial service degradation.	
	Low	Minor interruptions, brief service slowdowns.	
Cause of	Al Misconfiguration	Misconfigured resource settings, faulty automation.	
failure	Predictive Maintenance Error	Missed maintenance alerts, undetected failures.	
	Security Vulnerability	Exploited Al weaknesses, data breach vulnerabilities.	
	Human-Related Al Errors	Design flaws, oversight errors.	
	Physical Harm	Injuries from machinery failures, infrastructure damage.	
Type of harm	Environmental Harm	Increased emissions, environmental damage.	
	Property Harm	Damage to telecom towers, power substations.	
Psychological Harm		Public anxiety from outages, distress from service disruptions.	
	Reputational Harm	Loss of trust in service providers, damaged corporate credibility.	
	Economic Harm	Revenue loss from outages, penalties for non-compliance.	
	Legal/Regulatory Harm	Fines for GDPR breaches, regulatory sanctions.	
N	Human Rights Harm	Privacy violations, restricted freedoms from surveillance.	

5. References

- Agarwal, A., & Nene, M. J. (2024, July). Addressing Al Risks in Critical Infrastructure: Formalising the Al Incident Reporting Process. In 2024 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT) (pp. 1-6). IEEE.
- 2. Avinash, A., & Manisha, N. (2024, October). Advancing Trustworthy AI for Sustainable Development: Recommendations for Standardising AI Incident Reporting. In 2024 ITU Kaleidoscope: Innovation and Digital Transformation for a Sustainable World (ITU K) (pp. 1-8). IEEE.
- 3. Agarwal, A., & Nene, M. J. (2024, December). Standardised schema and taxonomy for Al incident databases in critical digital infrastructure. In 2024 IEEE Pune Section International Conference (PuneCon) (pp. 1-6). IEEE.

6. Abbreviations

Abbreviation	Full Form
Al	Artificial Intelligence
GDPR	General Data Protection Regulation
HVAC	Heating, Ventilation, and Air Conditioning
ICT	Information Communication Technology
loT	Internet of Things
URL	Uniform Resource Locator

End of Standard

Annexure-II

Template for submitting Comments or Feedback

[Comments on each section/sub section/table/figure etc. be stated in a fresh row. Information/comments should include reasons for comments and suggestions for modified wordings of the clause]

Name of Commentator/Organization

	F	T	T	T
S. No.	Section of	Clause/Para/Table/	Comments/	Justification for
	the Draft	Figure No. of draft	Suggested modified	proposed Change
	Standard	Standard	Wordings	
1.				
2.				
3.				
4.				
5.				
6				
7.				
8.				
9.				
10.				

Note- Kindly insert more rows as necessary for each clause/table, etc.

Name: Email: Mobile: